Received 9 January 2007

Accepted 17 January 2007

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

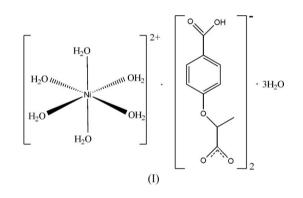
Zhao-Peng Deng, Shan Gao* and Peng-Gang Chen

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.003 Å H-atom completeness 94% Disorder in solvent or counterion R factor = 0.036 wR factor = 0.105 Data-to-parameter ratio = 15.5


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexaaquanickel(II) bis[2-(4-carboxyphenoxy)propionate] trihydrate

In the title complex, $[Ni(H_2O)_6](C_{10}H_9O_5)_2\cdot 3H_2O$, two independent Ni atoms both lie on centers of symmetry and have an octahedral coordination. The cations and anions are linked by $O-H\cdots O$ hydrogen bonds into a three-dimensional supramolecular framework.

Comment

An earlier report (Deng *et al.*, 2007) detailed the synthesis and crystal structure of [2-(4-carboxylatophenoxy)propionato]-cobalt(II) hexahydrate. Replacing cobalt by nickel in a similar reaction leads to the formation of the title compound, (I) (Fig. 1), which is also a hexahydrated complex. The two Ni^{II} atoms both lie on centers of symmetry and are six-coordinate in an octahedral environment; the Ni–O bond lengths are somewhat shorter than the Co–O bond distances [2.0310 (17)–2.0685 (16) Å]. Similarly, the cations and anions are linked by extensive hydrogen bonds into a three-dimensional supramolecular network (Table 2).

Experimental

Nickel(II) acetate trihydrate (2.31 g, 10 mmol) was added to a hot aqueous solution of 2-(4-carboxyphenoxy)propionic acid (2.10 g, 10 mmol). Sodium hydroxide (0.1 *M*) was added dropwise until the solution registered a pH of 6. The filtered solution was allowed to evaporate at room temperature, and green prismatic crystals of (I) were separated from the filtered solution after several days. Analysis calculated for $C_{40}H_{72}Ni_2O_{38}$: C 37.58, H 5.68%; found: C 37.63, H 5.66%.

Crystal data [Ni(H₂O)₆](C₁₀H₉O₅)₂·3H₂O $M_r = 637.18$ Monoclinic, $P2_1/n$ a = 7.9771 (16) Å b = 13.265 (3) Å c = 27.308 (6) Å $\beta = 96.17$ (3)° V = 2872.9 (10) Å³

Z = 4 $D_x = 1.473 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.76 \text{ mm}^{-1}$ T = 295 (2) K Prism, green $0.36 \times 0.24 \times 0.20 \text{ mm}$

© 2007 International Union of Crystallography All rights reserved

metal-organic papers

Data collection

Rigaku R-AXIS RAPID diffractometer (i) scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.772, T_{\max} = 0.863$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ wR(F²) = 0.105 S = 1.086573 reflections 424 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Ni1-O2W	2.0397 (14)	Ni2-O4W	2.0310 (17)
Ni1 - O3W	2.0491 (14)	Ni2-O5W	2.0385 (17)
Ni1 - O1W	2.0648 (15)	Ni2-O6W	2.0685 (16)
$O2W - Ni1 - O2W^i$	180	$O4W-Ni2-O4W^{ii}$	180
O2W = Ni1 = O2W O2W = Ni1 = O3W	87.95 (6)	O4W = Ni2 = O4W O4W = Ni2 = O5W	89.59 (10)
$O2W^{i}$ -Ni1-O3W	92.05 (6)	$O4W^{ii}$ -Ni2-O5W	90.41 (10)
$O3W-Ni1-O3W^{i}$	180	O5W-Ni2-O5W ⁱⁱ	180
$O2W-Ni1-O1W^{i}$	86.29 (7)	O4W-Ni2-O6W	90.73 (8)
$O3W-Ni1-O1W^{i}$	90.87 (6)	O4W ⁱⁱ -Ni2-O6W	89.27 (8)
O2W-Ni1-O1W	93.71 (7)	O5W-Ni2-O6W	90.18 (7)
O3W-Ni1-O1W	89.13 (6)	O5W ⁱⁱ -Ni2-O6W	89.82 (7)
$O1W^{i}$ -Ni1-O1W	180	O6W-Ni2-O6W ⁱⁱ	180

27742 measured reflections

 $R_{\rm int}=0.028$

 $\theta_{\rm max} = 27.5^\circ$

6573 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0495P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.9359P]

 $\Delta \rho_{\rm max} = 0.49 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

4873 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x, -y, -z; (ii) -x + 1, -y + 1, -z.

Table 2		_	
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1W1···O5 ⁱ	0.827 (9)	1.968 (10)	2.792 (2)	175 (2)
$O1W - H1W2 \cdot \cdot \cdot O8W$	0.831 (19)	1.975 (10)	2.801 (2)	173 (3)
$O2W - H2W1 \cdots O9W^{iii}$	0.81 (2)	1.939 (13)	2.726 (2)	162 (3)
$O2W - H2W2 \cdot \cdot \cdot O2^{iv}$	0.811 (9)	1.943 (12)	2.738 (2)	166 (3)
$O3W - H3W1 \cdots O4$	0.837 (9)	1.805 (11)	2.636 (2)	171 (2)
$O3W - H3W2 \cdot \cdot \cdot O9^{v}$	0.83 (2)	2.079 (13)	2.862 (2)	158 (2)
$O4W - H4W1 \cdots O7^{vi}$	0.821 (10)	1.965 (11)	2.781 (2)	173 (4)
$O4W - H4W2 \cdot \cdot \cdot O9W^{ii}$	0.820 (10)	1.98 (3)	2.766 (2)	160 (3)
O6W−H6W1···O10	0.83 (3)	1.851 (10)	2.675 (2)	174 (3)
$O6W - H6W2 \cdots O5$	0.821 (9)	2.452 (18)	3.135 (2)	141 (2)
$O8W - H8W1 \cdots O7^{iv}$	0.83 (3)	1.96 (3)	2.788 (2)	176 (3)
$O8W - H8W2 \cdot \cdot \cdot O2^{iv}$	0.83 (3)	1.991 (10)	2.809 (2)	170 (3)
O9W−H9W1···O5	0.841 (9)	1.922 (11)	2.750 (2)	168 (3)
O9W−H9W2···O9	0.85 (2)	1.894 (10)	2.737 (2)	172 (3)
O1−H1O···O4 ^{vii}	0.818 (10)	1.827 (11)	2.6401 (19)	172 (3)
O6−H6O···O10 ^{viii}	0.810 (10)	1.847 (11)	2.6522 (19)	173 (3)

Symmetry codes: (i) -x, -y, -z; (ii) -x + 1, -y + 1, -z; (iii) -x + 1, -y, -z; (iv) $\begin{array}{c} -x+\frac{1}{2}, y-\frac{1}{2}, -z+\frac{1}{2}; \quad (v) \quad x-1, y, z; \quad (vi) \\ -x+\frac{1}{2}, y+\frac{1}{2}, -z+\frac{1}{2}; \quad (viii) -x+\frac{3}{2}, y-\frac{1}{2}, -z+\frac{1}{2}. \end{array}$ $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (vii)

Carbon-bound H atoms were placed in calculated positions, with C-H = 0.93-0.97Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl or $1.2U_{eq}(C)$ for other H atoms, and were refined in the riding-model approximation. The uncoordinated water molecule O7W is disordered over two positions; the occupancies of O7W and O7W' refined to 0.755 (3) and 0.245 (3), respectively. H atoms could not be placed in any

Ni₂ 01)4w Ni1 O3w 08w O5w O2w O6w **09w** 05 C10 1010 C6 C7 **C8** 09 C20 C9 C5 O3 C4 C15 C16 08 C17 C14 C13 C12 06

Figure 1

The structure of the independent components of (I). The disordered water molecule is not shown. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radius. Hydrogen bonds are shown as dashed lines. Unlabeled atoms in the Ni1 cation are related to labeled atoms by (-x, -y, -z). Unlabeled atoms in the Ni2 cation are related to labeled atoms by (1 - x, 1 - y, -z).

chemical sensible positions owing to the disorder. Other H atoms of the water molecules and hydroxyl groups were located in a difference Fourier map and refined with O-H and H...H distance restraints of 0.82 (1) and 1.39 (1) Å, respectively, and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-II (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (1054 G036), and Heilongjiang University for supporting this study.

References

Deng, Z.-P., Gao, S. & Chen, P.-G. (2007). Acta Cryst. E63, m296-m298.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.